*(Sandipan Dey, **11 August 2016)*

- In this article, the Poisson-Gamma Conjugate Priors will be used to compute the Posterior Probabilities of the number of
*customer arrivals*in a retail shop every*10 minutes time window*(can be modeled by a*Poisson process*). - First, a Γ(α,β) prior is chosen with α=4,β=0.4 (consistent with our belief that the mean number of customers arrived in the store in a 10-min time window is 10, with a standard deviation of 5) to model the unknown mean customer arrival rate λ variable, so that λ∼Γ(4,0.4).
- Then a few trials of a random experiment simulating the customer arrival process are conducted to collect the data and update the prior belief about λ from the likelihood, which can be modeled as
*i.i.d. Poisson*random variables, Yi∼Pois(λ),λ∼Γ(α,β),∀i. - The posterior probability distribution is also a
*Gamma*distribution as shown in the figure below from the videos of professor Herbert Lee.

- Then the
*recursive Bayesian updates*and the*prior*and*posterior hyper-parameters*and the means are updated as and when a new datapoint is received. Also, the*frequentist’s MLE*and*95% confidence interval*are computed, along with the Bayesian*95% credible interval*. - The following animation shows the results of simulation of customer arrivals in 20 such time intervals (each of 10 mins), starting with the prior Γ(4,0.4).
- The left bottom barplot visualizes simulated # customers arrived in every 10 mins window.
- Every time a new datapoint is received (# customers arrived at the shop in the next 10 mins window), the prior belief is updated.
- The right bottom table represents the summary statistics. Prior and Posterior means respectively correspond to the previous and updated beliefs about the #customers arrived at the shop in a 10 mins time window.
- The next animation shows the same results starting with a
*vague prior*Γ(ϵ,ϵ).

Advertisements
(function(g,$){if("undefined"!=typeof g.__ATA){
g.__ATA.initAd({collapseEmpty:'after', sectionId:26942, width:300, height:250});
g.__ATA.initAd({collapseEmpty:'after', sectionId:114160, width:300, height:250});
}})(window,jQuery);
var o = document.getElementById('crt-1735517789');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-1735517789",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-1735517789'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); } });
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}
var o = document.getElementById('crt-1176881060');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:837497,containerid:"crt-1176881060",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-1176881060'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); } });
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}